
JOURNAL OF COMPUTATIONAL PHYSICS 6, 124-130 (1970) 

Modification of Nesbet’s Algorithm for the Iterative Evaluation of 
Eigenvalues and Eigenvectors of Large Matrices 

In the investigation of the electronic structure of atoms and molecules by the 
configuration interaction method, it is necessary to determine the lowest eigenvalue, 
and corresponding eigenvector, of quite sizable Hermitian (generally real 
symmetric) matrices having a dominant main diagonal. In large-scale calculations 
of this kind, the order of the matrices may be anywhere from a few hundred to 
tens of thousands, the matrices cannot normally be accommodated in their entirety 
in the high-speed store of a computer, and the classical methods for matrix 
diagonalization are ineffective or impractical. Furthermore, those methods which 
modify the original matrix, such as the tridiagonalization schemes of Givens 
and of Householder (for detailed references see Wilkinspn [l]), are prone to 
accumulate sizable round-off errors when applied to very large matrices, while 
iterative techniques which leave the matrix unchanged and do not propagate 
errors from one iteration to the next are much more reliable. Another consideration 
is the considerable sparsity of the matrices that occur in the configuration inter- 
action calculations. Most available diagonalization methods will destroy this 
aparsity in the intermediate stages of the calculation, while a method which does 
not modify the original matrix can be organized to avoid storing and handling 
any zero elements throughout the process. 

A very effective iterative method for this problem has been devised by Nesbet [2], 
and has been used by the present author and his co-workers for some time with 
considerable success. There is, however, one feature in Nesbet’s algorithm which 
introduces some difficulty in its application to matrices which are too large to fit 
into the central store of the computer and introduces complications in attempts 
to take advantage of the sparsity of the matrix. The algorithm requires access 
to all the elements of the matrix, one by one (ordered by rows), for each iteration. 
As symmetric matrices are most effectively generated and stored as semimatrices, 
with their lower triangular part ordered by rows, going through a complete row 
involves also going down a column for that part of the row which is in the omitted 
triangle. If the matrix overflows the available central storage and is fetched in 
blocks from an external storage device (such as a tape) for each iteration, this would 
necessitate prior conversion to square form, which is a rather laborious process in 
itself and results in approximately doubling the amount of external storage that 

124 



EIGENVALUES OF LARGE MATRICES 125 

has to be accessed in each iteration. If we are dealing with a very sparse matrix, 
so that it is advantageous to omit zero elements (requiring appropriate identication 
of the remaining elements), then even if the nonzero part of the semimatrix does 
fit into the central store, there is no practical algorithm for locating elements 
down a specihed column, as would be necessary if we are to avoid conversion to 
full-matrix form (with the corresponding doubling of required storage). 

A modification of Nesbet’s algorithm is proposed here, which makes it possible 
to proceed through the matrix, one row at a time, in its semimatrix (lower 
triangular) form. Each row (up through the diagonal element only) is brought in 
once and scanned twice in succession during each iteration, resulting in about the 
same amount of arithmetic as in the original algorithm but considerably less data 
handling. Sparse semimatrices are handled very easily since all processes are 
sequential in the rows and no column access is required, allowing a storage scheme 
which omits all zeros. The modified algorithm has been applied successfully 
to a considerable number of configuration interaction matrices of various sizes 
(see, e.g. [3-6]), including one of order 12,077 with about 2,000,OOO nonzero 
elements in the semimatrix, and has generally converged to the lowest eigenvalue 
in about seven iterations. The number of iterations required does not seem to 
depend appreciably on the order of the matrix (the n = 12,077 case took nine 
iterations), and the total work involved in the solution is merely proportional to 
the number of nonzero elements in the semimatrix. 

THE ORIGINAL ALGORITHM 

Nesbet’s algorithm as originally given [2] is meant to solve the generalized 
eigenvalue problem 

Hc = ESc, (0 

where H is the given (real symmetric) matrix, S is a given metric (overlap ~natrix) 
which is real, symmetric, and positive definite (and often just the unit matrix), 
E is the desired eigenvalue, and c is the corresponding eigenvector. Starting with 
some initial guess for c (e.g., c, = 1 for some nonzero component of c, preferably 
the dominant one, and c, = 0 for all ~1 # v), we compute an estimate for E from 

D = 2 G~UACA, (2) 
u.A=1 

n 

N = c C,%CA , (3) 
u.h=l 



126 SHAVIlT 

and 
E = N/D (4) 

(n being the order of the matrices). Then, keeping one non-zero component of c 
(preferably the dominant one) fixed, each of the other components c, is adjusted 
in turn according to 

n 
(5) 

(6) 
A=1 

AC, = 4EL - H,,), (7) 
AD = (2f, + S,Jc,)&, , (8) 
AE = upA~,,/(~ + AD), (9 

with c, , D, and E being incremented by AC, , AD, and AE, respectively, at the end 
of this sequence before proceeding to the next component. A complete iteration 
consists of the repetition of these steps for all rows p (except the row corresponding 
to the fixed component c,), and iterations are continued until the largest value 
of 1 AC, 1 in one complete iteration is less than a specified criterion C. The relative 
error in E - Hav , where Hav is an average diagonal element of H, is then roughly 
proportional to C2 (assuming that c is approximately normalized). It is not essential 
in this form of the algorithm that the rows be processed in any particular order, 
and in fact, it is not even necessary that a complete iteration on all the rows be 
carried out before returning to process any particular row again, though the 
program structure is simpler if no advantage is taken of this flexibility. 

It should be noted that the quantities f, , uU , AC, , AD, and AE need not be 
kept from one row to the next (except that a record of the largest 1 AC, 1 so far 
in the current iteration has to be maintained and updated as required), and the 
only array for which storage has to be provided, in addition to buffers for the 
current blocks of H and S (when these are in square matrix form), is the vector c. 
The published algorithm includes an additional feature, whereby an iteration is 
cut short after any row h whenever 1 Ach I is greater than a variable criterion C’, 
which is taken as a specified fraction (usually about one half) of the largest I AC, 1 
of the last complete iteration, and a new iteration is then started. In the experience 
of the present author, this feature was generally ineffective in reducing the number 
of complete iterations required and was abandoned. 

In the special case in which S is a unit matrix, Eq. (2) is replaced by 

D = i ch2, 
A-l 

(2’) 



EIGENVALUES OF LARGE MATRICES 127 

Eq. (5) is omitted,f, is replaced by c, in Eqs. (6) and (8), and S,,, is omitted from 
Eqs. (7) and (8). In the opinion of the present author, it is usually more advanta- 
geous in linear variational calculations to set up the eigenvalue problem in an 
orthogonal basis (S = 1) in the first place and to use the special form of the 
algorithm for this case, than to solve the general case of Eq. (1) directly. In addition 
to a reduction in total storage requirements and computation time (and in many 
cases an increase in the sparsity of H), this may also have a beneficial effect in 
reducing the sensitivity of the computed eigenvaiue to inaccuracies in the matrix 
elements (see Delves [71, but this argument does not apply of course to the case 
where the variational problem is first set up in nonorthogonal form and H is only 
transformed to an orthogonal basis before solving the eigenvalue equation). 
An exception to these comments may occur when S is almost a unit matrix, 
possessing only small nondiagonal blocks along the main diagonal, when the use 
of the general (nonorthogonal) algorithm may be preferable. 

THE MODIFIED ALGORITHM 

In order to eliminate the need for matrix elements beyond the diagonal (i.e., for 
X > p) in the sums of Eqs. (5) and (6), certain partial sums can be formed during 
each iteration, at the point where the required elements are available, and used 
in the following iteration. Thus, if we write 

and 

f Huaca = i Huaca + u,i , (11) 
A-4 A-l 

where (using the symmetric character of the matrices) 

t, = i s,,c, = i s,,c, (12) a-u+1 .i=u+l 

u,, = f Huaca = i %A , (13) 
A=&-1 A=44 

we can calculate the contribution of row X to all ta and u,, for TV < h when c,, is 
updated, in preparation for the next iteration (any t, and u, which is recalculated 
in this manner is no longer needed in the current iteration). Unlike the situation 
in the original algorithm, this requires that the rows be processed in their natural 



128 SHAVITI 

sequence. Storage is now required for the vectors t and u, as well as for (at least) 
one complete row of S and H. In the orthogonal case t and S are of course 
unnecessary. 

The modified algorithm can be described by the following sequence of steps 
(the reverse arrow +- denotes replacement): 

I. Initialization 

1. Obtain an initial approximation for c (e.g., c, = 1 for the dominant 
component and c, = 0 for all E.L # v). 

2. Set V = W = 0. 
3. For p = 1,2 ,..., iz in turn, 

(a) set t, = U, = 0, 
(b) obtain row p (S,, and H,,h for h = 1,2 ,..., p), 
(c) except when p = 1, for each X = 1, 2 ,..., p - 1, set t,, +- t,+ + &,,c, 

and u,+ + uA + Huhc,, , 
(d) set V c V + S,,cU2 and W +- W + H,,,cu2. 

4. Compute D = 2.&c, + V, N = 2.&,c, + W, E = N/D. 

II. Zteration 

1. Set dcmax = 0. 
2. For each E.L = 1, 2 ,..., y1 [but steps (b)-(g) should be skipped for p = v, 

the fixed component], 
(a) obtain row p, 
(b) compute f, = t, + C!==, SUAcA , g,, = U, + C!A &A , 
(c) compute u, = g, - Efu , 
(d) compute AC, = uu/(ESuu - H,,), 
(e) set D - D + (2& + S,Jc,) AC, , 
(f) set E +- E + u,Ac,/D, 
(g) set c, + c, + AC, and Acmax + max(Acmax , I AC, I), 
(h) set tu = u, = 0, 
(i) for each h = 1, 2,..., TV - 1, set th c t,, + SUAcU and uA c u, + Hunt,, . 

3. If Acmax > C (at the end of a complete iteration), repeat from step 11.1. 

If the word-length of the computer is rather short and there is some danger of 
accumulation of round-off errors in the continuing updating of D and E in steps 
11.2(e, f), then E should be recalculated after the last iteration (or in extreme cases 
after each iteration) from step 1.4, with steps I.2 and 1.3(d) repeated in the iteration 
stage. On the other hand, if the word-length is more than adequate, it would be 



EIGENVALUES OF LARGE MATRICES 129 

permissible to eliminate step 11.2(h) and at the same time replace c, by dc, in 
step 11.2(i); in this case, the whole of step II.2 will be skipped for p = v, and 
Nesbet’s device of cutting short an iteration whenever a particular dc, is large 
could be incorporated in this form of the algorithm if desired. The procedure 
would of course be simplified somewhat if we require that the fixed component 
of c be the first one (v = 1). In the special case of S = 1, all steps involving t and S 
are omitted, whilef, and S,, are replaced by c, and 1, respectively, throughout. 

As previously mentioned, in order to handle sparse matrices efficiently it is 
advantageous to record and handle the nonzero elements only. These should be 
ordered by rows (for the lower-triangular semimatrix), and each element Huh 
(or ,S,,) should be identified by its column index h-the program can keep track 
of the row index E.L automatically by stepping it up by 1 every time a diagonal 
element (X = II) is passed (the diagonal elements are always assumed to be present). 
On computers with ample word length, and with convenient access to parts of 
complete words, the column index can be packed into the low-order part of the 
computer word containing the matrix element and considered part of the number 
for the purpose of arithmetic operations on the element. In steps 11.2(b, i), instead 
of using a DO-type loop control, each packed element would be picked up in turn, 
its low-order part would be obtained to determine h, and the element would be 
multiplied by the appropriate vector component and added to the appropriate 
partial sum. When such packing is not practical, a separate list of indices X, 
paralleling the list of non-zero matrix elements (but made up of shorter words, 
if possible), can be used. The non-zero elements would not necessarily occur in 
the same positions in S and H, and these two matrices should therefore be handled 
independently. 

The computation time would of course vary with the details of the computer 
word length, instruction code, and overall speed. With a program written by 
Pipano [5] for the CDC 6400 (in FORTRAN except for index unpacking) for the 
case S = 1, the central processor time required was about 0.1 msec per nonzero 
element of H per iteration (including external storage access), with about seven 
iterations needed in most cases. 

CONVERGENCE 

Let E and c be an exact solution of Eq. (l), and let c’ = c + 8 be an approxi- 
mation to c, such that the error vector S is of order EC. The error d in the corre- 
sponding eigenvalue approximation, E’ = E + b, as obtained from Eqs. (2)-(4), 
is easily shown to be 



130 SHAVITT 

and is of order e2, as pointed out by Nesbet [2]. The correction dc, obtained for 
the element cU’ of c’ by the application of Eqs. (5)-(7) can then be expressed as 

The first term on the right side of Eq. (15) represents the true correction needed 
to make c,’ + AC, exactly equal to c, , while the second term represents the 
residual error. In order to keep this error small, it is necessary that the first term 
in the curly brackets, which couples the correction AC, to the errors 6, in all the 
other vector components, be small compared to H,, - E’S,, . Good convergence 
therefore requires that the off-diagonal elements of the matrix H - E’S be small 
compared with its diagonal elements, and particularly that E’ (and thus E) be 
reasonably well separated from the values of H,,,/S,, for all TV f v (where c, is the 
component of c held fixed during the iterations). 

It is thus seen that the algorithm can be expected to converge particularly well 
for the lowest and highest eigenvalues (which are outside the range of all H,,/S,, 
values), and that the best choice for the value of v, the index of the fixed component, 
is that for which H,,/S,, is closest to the desired eigenvalue. 

ACKNOWLEDGMENT 

The author gratefully acknowledges valuabie discussions with Dr. A. Pipano and Dr. C. F. 
Bender. 

REFERENCES 

1. J. H. WILKINSON, “The Algebraic Eigenvalue Problem,” Oxford University Press, London, 
1965. 

2. R. K. NESBET, J. Chem. Phys. 43 (1965), 311. 
3. A. PIPANO AND I. SHAVITT, Znt. J. Quantum Chem. 2 (1968), 741. 
4. M. RUSINSTEIN AND I. SHAVITT, J. Chem. Phys. 51(1969), 2014. 
5. A. PIPANO, R. R. GILMAN, AND I. SHAWT, to be published. 
6. C. F. BENDER AND E. R. DAVIDSON, Phys. Rev. 183 (1969), 23. 
7. L. M. DELVES, J. Computational Phys. 3 (1968), 17. 

RECENED: October 7, 1969 
ISAIAH SHAvrl-r 

Battelle Memorial Institute, SO5 King Avenue, Columbus, Ohio 43201 
and 

Department of Chemistry, The Ohio State University, Columbus, Ohio 43210 


